Gamla muntliga nationella prov matte åk 6
•
Nationellt prov Matematik 1a - Vårtermin Ma1a - VT
Exempelprov Matematik 1a - Ma1a -
Nationellt prov Matematik 1a - Hösttermin Ma1a - HT
Nationellt prov Matematik 1a - Vårtermin Ma1a - VT
Nationellt prov Matematik 1a - Hösttermin Ma1a - HT
•
Tidigare prov
Ämnesprov matematik årskurs 6, /
Äp6 Ma Lärarinformation 1 ( Kb)
Äp6 Ma Lärarinformation 2 ( Kb)
Äp6 Ma Bedömningsanvisningar 1 ( Kb)
Äp6 Ma Bedömningsanvisningar 2 ( Kb)
Äp 6 Ma Delprov B ( Kb)
Äp 6 Ma Part B engelsk utgåva ( Kb)
Äp 6 Ma Delprov C ( Kb)
Äp 6 Ma Part C engelsk utgåva ( Kb)
Äp 6 Ma Delprov D ( Kb)
Äp 6 Ma Part D engelsk utgåva ( Kb)
Äp 6 Ma Delprov E ( Kb)
Äp 6 Ma Part E engelsk utgåva ( Kb)
Ämnesprov matematik årskurs 6, /
Lärarinformation 1 inkl delprov A / ( Kb)
Bedömningsanvisningar 1 / ( Kb)
Lärarinformation 2 / ( Kb)
Delprov B / ( Kb)
Delprov B / engelsk ( Kb)
Delprov C / ( Kb)
Delprov C / engelsk ( Kb)
Delprov D / ( Kb)
Delprov D / engelsk ( Kb)
Delprov E / ( Kb)
Delprov E / engelsk ( Kb)
Bedömningsanvisningar 2 / ( Kb)
Ämnesprov matematik årskurs 6, /
Lärarinformation 1 inkl delprov A / ( Kb)
Bedömningsanvisningar 1 / ( Kb)
Lärarinformation 2 / ( Kb)
Delprov B / ( Kb)
Delprov B /, engelsk ( Kb)
Delprov C
•
Gamla nationella prov
Är du ute efter att förbereda dig inför nationella prov och vill ha tillgång till tidigare års uppgifter? Då har du kommit rätt. Här kan du enkelt ladda ner och granska de gamla nationella proven som skolverket har frisläppt och som inte omfattas av provsekretess.
Varför är det bra att använda gamla nationella prov?
Förstå provformatet: Genom att studera tidigare års prov får du en klar förståelse för provformatet och vilka typer av frågor som kan ställas. Detta kan hjälpa dig att känna dig mer bekant och självsäker när du går in i det faktiska provet.
Identifiera mönster och trender: Genom att analysera gamla nationella prov kan du upptäcka mönster och trender gällande vilka ämnesområden som ofta täcks och vilka typer av frågor som tenderar att dyka upp. Detta ger dig möjlighet att fokusera din studieinsats på de områden som är mest relevanta.
Öva på realistiska uppgifter: Genom att lösa tidigare års